Der ClassPad 300/330 im Zentralabitur Niedersachsen

Übersicht der mit dem CAS-Rechner erwartete Fähigkeiten im Fach Mathematik vgl. Niedersächsisches Kultusministerium vom 24. September 2007

1. Die Grundlagen

Im Verlauf des Kapitels 1 sollen die Funktion
$$f$$
 mit $f(x) = (x+3)(x+1)$ und die Funktionsschar
 g_k mit $g_k(x) = -\frac{x^2 - 2x - 8}{x+2} + k; k \in \{1;10;13\}$ betrachtet werden.

(1) Einstellen der Grundmodi des jeweiligen CAS und Umgang mit Fehlermeldungen

Einstellen des Grundmodus

Das linke Sichtfenster erhalten Sie über das **System-Menü**. Vor Klausuren ist eine Rückstellung empfehlenswert. **Reset** bewirkt eine Rückstellung der Variablen/ Programme und/oder der eActivitiy- Daten. Nach der Warnung sollte mit OK bestätigt werden. Durch **Init** können alle Daten/ Variablen/ Add-Ins auf die Werksvoreinstellung zurückgestellt werden. Die Initialisierung ist mit sehr viel Vorsicht zu genießen, da alle nach dem Kauf getätigten Daten gelöscht werden können.

Umgang mit Fehlermeldungen

Fehler	Ursache	Abhilfe
Falscher Argumenttyp, Ungültige Syntax	 Befehle falsch eingegeben 	 Eingabe evtl. mit Anleitung überprüfen.
Maximalwert muss größer als Minimalwert sein	 Darstellungsfenster f ür Graphen ist falsch eingestellt 	 Überprüfen der Min/ Max- Werte (meist werden diese vertauscht).
Keine Einträge/ Eintrag ausgewählt	 Es ist keine Funktionsgleichung aktiviert 	 Aktivieren mindestens einer Funktionsgleichung durch Antippen eines Kontrollkästchens
Ungültige Dimension	 Matrizen, die multipliziert werden sollen, haben eine unpassende Dimension 	 Kontrolle der Dimension, ggf. Dimension abändern.

(2) Speicherfunktion nutzen

Zahlwerte abspeichern

Berechnete Werte wie der Funktionswert f(2) können über das **Keyboard** abgespeichert werden. Dazu wird zunächst **ans** und anschließend \implies gewählt. Buchstaben sind über den Karteikartenreiter **abc** zu erhalten.

											_
t	💙 Edit Aktion Interaktiv	< X	[mth	abc	cat	2	ß	13	<u>][</u>	Ŧ	
1	▝▙▌▞▞▶▐▓▓▓▓▓▓▓▓▓▓▓▓	۱	πθ	i 🌶	0,	Þ	۲Þ	Ż	t	•	
t	(2+3)×(2+1)			\ √	i ¶_		Ø	9	囚	Ξ	
•		15		<u> </u>	10-а П	4	5	6	Ľ	÷	
•	ans≑a		Ļŕ		100 9 10	1	2	3	+	-	Ł
۱		15		()H	() {=	0	•	E	an	IS	
	a	15	CAL	.C	TRANS	Ĩ	VA	R	E/	ŧΕ	r
			Algeb) Sta	andard	Rea	1 B	091			

0,5 | 4→2

Defi

Funktionen abspeichern

Um Funktionen als auch ihre Ergebnisse abzuspeichern, wird im Main- Menü das Menü Aktion oder das Menü Interaktiv aufgerufen und der Befehl define gewählt (durch das Menü Aktion wird der Befehl ohne Hilfestellung direkt eingegeben).

Die Funktionsterme von f und g_{ν} werden

g_k in der nebenstehenden wie für Abbildung eingegeben, markiert und anschließend im Menü Interaktiv der Befehl define ausgewählt.

Die Funktionen sind nun abgespeichert und können auch in andere Menüs verwendet werden. Die Funktionswerte an Stellen können beguem berechnet werden. Das Abspeichern der Ergebnisse auch mit Parameter ist völlig analog zum Abspeichern von Zahlwerten.

Um die Parameter (für g_k) für spätere Aufgaben die Überlegung mit in einzubeziehen, können diese in einer Liste gespeichert werden.

Edit Aktion Interaktiv 👯		1
Umformungen Weiterführend Weiterführend Berechnung Komplex Liste-Erstellen Liste-Berechnen Matriz-Erstellen Matriz-Erstellen Matrizenrechnung Vektor Gleich./Ungleich. Rssistent Verteilung Define apply	Define Fktname: gk Variable/n: x Ausdruck: ((x^(2)-2) OK Abbr. Mth abc cat 2D X.	× -8
<pre> Edit Aktion Edit Aktion Define f(x)=(; Define gk(x)=² f(2) gk(2) ans⇒b (1,10,13)⇒list D </pre>	h Interaktiv X d ♥ / / ♥ ♥ x+3)(x+1) done x ² -2·x-8 x+2 done 15 k-2 k-2 tk {1,10,13}	

Algeb Standard Real Bog 💷

❤ Edit Aktion Interaktiv

Veiter

Berecl

Liste-

Liste

Matrix

Matriz

Komple

approz simplify

expand

rEactor

combine

collect

factorOut

と は 小 ト し Umforr

(3) Arbeiten mit Termen

Vereinfachung der Funktionsschar g_{μ} :

Komplizierte oder ungekürzte Terme wie die der Funktionsschar g_{ν} können im Main- Menü über das Menü Aktion (oder Interaktiv) über das Untermenü Umformung durch den Befehl simplify vereinfacht werden.

Ausmultiplizieren der Funktion f:

Faktorisierte Terme wie der Funktionsterm von f können über das Main- Menü durch das Menü Aktion (oder Interaktiv) über das Untermenü Umformungen durch den Befehl expand ausmultipliziert werden.

💙 Edit Aktion Interaktiv	×
ªᢤ₀►∭≈⊒®≈∕≠+/▼	۵
expand((x+3)(x+ <u>1))</u>	
x ² +4•x+3	

🎔 Edit Aktion Interaktiv

-x+k+,

simplify

(4) Arbeiten mit Funktionen

Arbeiten mit Wertetabellen

Die Funktionswerte von f sind schneller zu ermitteln, wenn über das Grafik & Tabelle-Menü die Wertetabelle gewählt wird. Dazu wird in der Symbolleiste das eingekreiste Ikon markiert.

₩ Edit Typ GMem ♦	X		x	y1	Π
/₩IIII)=▼IIIIIIIII	\mathbb{R}		1	15	
Blatt1 Blatt2 Blatt3 Bl 4	Ŀ١		3 4	24 35	
<pre></pre>		Ļ	5	48_	
		┛ᄃ			
□y3: □		8			La constante da
Dy4: D		<u> </u>			L ¥
Dy5: D		Bog	Real		4 111

Sollen die Werte abgeändert werden, so ist dies entweder durch direkte Eingabe möglich oder man wählt das eingekreiste Ikon in der Symbolleiste und gibt den Startund Endwert als auch die Schrittweite entsprechend ein.

	😻 Edit T-Fakt 🖓 fik 🔶 🗵	Tabelleneingabe 🛛
		G
2	Blatt1 Blatt2 Blatt3 Bl 4 >	nf
,	⊠y1=(x+3)•(x+1) []▲	Startwert: 2
		Ende : 4
		Schr. :0.1
	🗆 y8: 🛛 🛛 🔽	

Angemessene grafische Darstellung von Funktionen

Der Graph der Funktion f kann über das Ikon des **Graphen** in der Symbolleiste vom **Grafik & Tabelle- Menü** gezeichnet werden.

Wählt man das (zweite) eingekreiste Ikon, können Graphen in einem selbstdefinierten Koordinatensystem eingezeichnet werden.

Durch den ovalen Cursor können bereits gezeichnete Graphen nach links bzw. rechts und nach oben bzw. unten verschoben werden! Genauso kann durch das **Hand-Ikon** in der Symbolleiste das Koordinatensystem verschoben werden.

Es besteht die Möglichkeit über das Menü Zoom im Grafik & Tabelle- Menü den Graphen geeignet zeichnen zu lassen.

Beispiel: Zoomen mit Feld:

Zunächst wird ein Eckpunkt in der Grafik durch den Stift angetippt. Durch Ziehen markiert man den gegenüberliegenden Eckpunkt.

Darstellung von Funktionsscharen

Im **Grafik & Tabelle- Menü** werden mit den Funktionsgleichungen von g_k die Parameter für k in geschweifte Klammern (oder die abgespeicherte Liste listk) eingegeben.

(5) Lösen von Gleichungen (Schnittpunkt)

Grafisches Lösen

Nachdem im **Grafik & Tabelle- Menü** der Graph gezeichnet wurde, kann ein Schnittpunkt über das Menü **Analyse** durch das Untermenü **Grafische Lösung** ermittelt werden (siehe auch 2. Analysis: Tabelle zu *grafisches Lösen*).

Tabellarisches Lösen

Im **Grafik & Tabelle- Menü** findet man in der Symbolleiste das Ikon für die Wertetabelle (vgl. (4) *Arbeiten mit Wertetabellen*). Die gewünschten x-Werte können (bis zur Lösung, die hier x=2 ist) auch direkt eingegeben werden!

Numerisches Lösen

Über das **Main- Menü** erhält man numerische Lösungen, indem eine Gleichung eingegeben, markiert und anschließend über das Menü **Interaktiv** und das Untermenü **Gleich./Ungleich**. der Befehl **solve** aufgerufen wird. In der Eingabemaske wird "numerische Lösung" gewählt und die Variable und ein Startwert eingegeben.

	loom Ana	lyse 🔶	X
Vi: IIII E	3 2 2 3	i ya Be	
	y1	y2	^
1.8	13.44 14.21	15.2 15.1	
2.1	15 15.81 16.64	15 14.9 14.8	

50	lve X
i OSolve	1
 Image: Image: Second sec	e Lösung 🖁
Gleichung:	(x+3)(x+1)=(
Variable:	x
Wert:	11
Unten:	-0
Oben:	0
ОК	Abbr.

Algebraisches Lösen

Über das **Main-Menü** erhält man algebraische Lösungen in Abhängigkeit des Parameters k! Nach dem der Befehl **solve** über das Menü **Aktion** (oder **Interaktiv**) über das **Untermenü Gleich./Ungleich.** aufgerufen wurde, gibt man direkt die zu lösende Gleichung ein.

2. Analysis

(1) Analyse von Funktionen bzw. Funktionsscharen

Es sei die Schar der Funktionen $f_k(x)$ mit $f_k(x) = (x+2)e^{kx}$; $k \neq 0$; gegeben.

Bestimmung der Ableitungsfunktionen

Das **Main- Menü** bietet mehrere Möglichkeiten, differenzierbare Funktionen abzuleiten. Eine Möglichkeit besteht über den Karteikartenreiter **2D** (nachdem Keyboard gedrückt wurde).

Nach Antippen des linken Ikons kann die Funktion als auch die Variable eingegeben werden. Der ClassPad bestimmt algebraisch die erste Ableitung der Funktion.

Mit dem rechten Ikon kann die zweite oder eine höhere Ableitung algebraisch bestimmt werden.

Achtung: richtiges X eingeben!

Über das Menü **Aktion** (oder **Interaktiv**) über das **Untermenü Berechnung** durch den Befehl diff können Ableitungen sowohl algebraisch als auch numerisch ($f'(-2) = diff(f_k(x), x, 1, -2) = e^{-2k}$) bestimmt werden.

Algebraische Lösung möglicher Wendestellen:

Im **Main- Menü** können durch Hintereinanderausführen der Befehle **solve** (vgl. *Grundlagen (5)*) und dem **diff-** Befehl alle (!) möglichen Wendestellen berechnet werden.

Je nach Problemstellung algebraische, numerische bzw. grafische Bestimmung von Nullstellen, Extrem- und Wendepunkten

Numerische Lösung möglicher Nullstellen: Im Main-Menü wird eine Gleichung numerisch gelöst, in dem Grenzen angegeben werden. Es empfiehlt sich die Eingabe über das Interaktiv-Menü (Gleich./Ungleich.).

solve $((x+2) \cdot e^{1 \cdot x} = 0, x, 0, -\infty, \infty)$ (x=-2)

🖤 Edit Aktion Interaktiv

╚╬╬┝╞╠╬⋥╚╩╱╤┟╢╤

Grafische Lösung möglicher Extrema:

Über das Grafik & Tabelle- Menü kann nach dem Einzeichnen über das Menü Analyse und über das Untermenü Grafische Lösung der gewünschte zu berechnende Wert gewählt werden.

Weiterhin stehen in dem o.g. Menü Berechnungsmöglichkeiten zur Verfügung, die im unterlegten Kasten ersichtlich sind.

Bestimmung von Grenzwerten

Wird über das **Keyboard** der Karteikartenreiter **2D** aktiviert, kann der Grenzwert einer Folge /Funktion direkt sichtbar eingegeben werden. Das Unendlichkeitszeichen erhält man über das entsprechende Ikon. Für Ergebnisse sollte der Parameter festgesetzt werden.

(2) Ermittlung von Stammfunktionen, bestimmten Integralen und Flächeninhalten

Es sei die Funktion
$$f$$
 mit $f(x) = 1 + \frac{x}{e^x}; x \in \mathbb{R}$ gegeben.

Über das Main- Menü kann algebraisch als auch numerisch integriert werden. Dazu Keyboard wählt man über den Karteikartenreiter 2D. Nach Aktivieren des Integralikons kann die Funktion eingegeben werden. Ohne Angabe der Integrationsgrenzen wird das unbestimmte Integral (eine Stammfunktion) bestimmt, mit Angabe der Grenzen wird das bestimmte Integral berechnet. Grafisch kann das bestimmte Integral über das Grafik & Tabelle- Menü bestimmt werden. Im Menü Analyse über das Untermenü Berechnung wählt man das Integrationsikon. Anschließend gibt man

3. Analytische Geometrie – Lineare Algebra

die Unter- bzw. Obergrenze direkt ein

(hier: $x_U = 0$ und $x_O = 1$).

(1) Bestimmung der Lösungsmenge sowohl eindeutig als auch nicht eindeutig lösbarer LGS

Es seien die Linearen Gleichungssysteme (LGS)
mit dem Parameter
$$a \in \mathbb{R}$$
 gegeben: $4x - 6y - 2z = a + 4$
 $-2x + 8y (a + 4) \cdot z = 2$
 $-2x (a + 4) \cdot y (a + 2) \cdot z = 0$ Die LGS können auch als Schnittproblem zwischen der Ebene $E: \vec{x} = \begin{pmatrix} 4 \\ -2 \\ -2 \end{pmatrix} \alpha + \begin{pmatrix} -6 \\ 8 \\ a + 4 \end{pmatrix} \beta$ und der
Geraden $g: \vec{x} = \begin{pmatrix} a + 4 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ -a - 4 \\ -a - 2 \end{pmatrix} \delta$ interpretiert werden.

1. Fall: Sei a = 1 gegeben:

Über das **Keyboard** über den Karteikartenreiter **2D** wird ein Gleichungssystem eingegeben. Durch wiederholtes Anklicken wird je eine neue Zeile ergänzt.

(Der Schnitt zwischen Ebene und gerade führt zu einem Punkt mit dem rechtsstehenden Ortsvektor)

2. Fall: Sei a = -1 gegeben:

Analog wie im ersten Fall wird das Gleichungssystem eingegeben.

Das LGS ist in diesem Fall nicht lösbar! (Es gibt keinen Schnitt zwischen Ebene und Gerade).

3. Fall: Sei a = 2 gegeben: Die Eingabe erfolgt analog zu den ersten beiden Fällen.

Die Lösung $\left\{ \begin{pmatrix} 3\\1\\0 \end{pmatrix} + s \begin{pmatrix} -1\\-1\\1 \end{pmatrix}; s \in \mathbb{R} \right\}$ ist direkt ablesbar!

(Die Lösungsmenge ist vergleichbar mit einer Schnittgeraden)

4.*Fall:* Sei ein beliebiges $a \in \mathbb{R}$ gegeben:

Image: State of the state
<pre>{ 4x-6y-2z=5 -2x+8y+5z=2 -2x+5y+5z=0</pre>
<pre>{ -2x+8y+5z=2 -2x+5y+3z=0</pre>
_2v+5u+3v=0
, , , , [_] , [_] ,
$\{r=11, r=7\}$
4x-6y-2z=3
K -2x+8y-3z=2
[-2x+3y+z=0 x,y,z
No Solution
4x-6y-2z=6
K -2x+8y-6z=2
[(-2x+6y+3z=0]x,y,z
(x=3,y=1,z=0)
└─────▼

🛛 🕊 Edit Aktion Interaktiv
▝▝▋▋▞▖▶▐▓▞▖▌▁▋▓▓▞▝▌▁▛▖▎▁▏
$\begin{cases} 4x-6y-2z=a+4 \\ -2x+8y+(a+4)z=2 \\ -2x+(a+4)y+(a+2)z=0 \\ x,y,z \\ \\ x=\frac{a^2+6\cdot a+4}{4\cdot(a+1)}, y=\frac{-1}{a+1}, z=\frac{a+6}{2\cdot a+2} \end{cases}$

Damit Parameter beim ClassPad nicht bereits belegt sind, können diese ggf. gelöscht werden. Über das Hauptmenü gelangt man zum Variablenmanager; dort angelangt, wählt man Main und anschließend über Edit in der Menüleiste den Befehl Löschen.

-									
	🗙 Edit Aktion Inter	aktiv 🔣		Variablenma	nager D	<	Variablenr	nanage	r X
1	Variablenmanager	┦┯╹	Ec	dit Ansicht Alle:	s Suche		Edit Ansicht Al	les	
I	Fenster-Linst.		Akt	tuell: main	_		Löschen		4Vars
I	Grundformat	⊐⊫≜l		Presystm	2Vars/	.	Umbenennen	MAT	216 🔺
I	Grafikformat	<u>5•a+4</u>		main	5Varsi		Kopieren Verschieben	MAT	216
I	3D-Format Geometriofermet	a+1)					Verschieden	MAT	216
I	Zusätzl. Format						Entriegeln	MAT	280
I	Finanzm. Format							1	
. 5		113881					11		

(2) Anwendung der jeweiligen Möglichkeiten des Rechners zur Lösung eindeutig lösbarer LGS mit n linearen Gleichungen und n Variablen, n > 3

0	
Wie in Analytische Geometrie – Lineare Algebra (1) gezeigt, kann das Gleichungssystem beliebig erweitert werden. Ist das Gleichungssystem über- oder unterbestimmt, wird eine "Dummy"- Variable eingegeben.	$\begin{cases} 2x+4y=2 \\ 3x+6y=3 \\ 3x+7y=4 \\ x,y,z \\ (x=-1,y=1,z=z) \\ x+y+z=10 \end{cases}$
Variable eingegeben.	$\begin{cases} x=-1, y=1, z=z \\ x+y+z=10 \\ x-y-z=0 \\ 1=1 \\ x, y, z \end{cases}$
	{x=5,y=-z+5,z=z}♥ Algeb Standard Kplx Gra @

(3) Operationen mit Matrizen

Auf dem Markt für Kreuzfahrtschiffe teilen sich drei große Konkurrenten und einige kleine Werften, die hier vernachlässigt werden sollen, die Marktanteile. Die größte Werft (A) konnte bislang 40 % Marktanteil verzeichnen. Die anderen beiden teilen sich die Marktanteile mit je ca. 30%. Die Veränderung der Marktsituation zum nächsten Kalenderjahr soll aus der folgenden Tabelle ersichtlich sein:

Marktanteile nach:	Werft A	Werft B	Werft C
von:			
Werft A	80 %	10 %	10 %
Werft B	7 %	90 %	3 %
Werft C	6 %	4 %	90 %

Matrizenmultiplikation

Matrizen können nach Eingabe (Keyboard, 2D, Calc) abgespeichert und miteinander multipliziert werden. Sollen die Ergebnisse als Dezimalzahl angegeben werden, wird am besten in der Statusleiste Dezimal (statt Standard) durch Anklicken gewählt.

[mth]	abc [cat	2D		16	Ð	Ŧ
πθ	i 🛛 🤇	þ,) /	עא	Z	t	٠
	[8]		N	8	9	ſ	E
limL	Σ□		4	5	6	Ľ.	Ė
<u>d</u>	- - 		<u> </u>	2	3 F		듸
	TRO	IS OF	TN	V	AR	E	XE
Algeb	Dezi	mal	Rea	1 B	09	÷]

••		
	🛛 🖤 Edit Aktion Interaktiv 🛛 🕅	🛛 🖤 Edit Aktion Interaktiv 🛛 🕅
(▝▙▙▓▖▶▕▓▓▖▎▙▓▖▖▎ᡔ᠇ᡫ/▝ 》	▝▙▋ᠿ▶▓⋨⋥⋭⋈⋳▼त॑▞▎▼ 》
	[0.40 0.30 0.30]⇒A [2] 3] 3] [2] 3 10] 10] [0.80 0.10 0.10] [0.80 0.10 0.10] 0.03]⇒B [0.06 0.04 0.90]	A×B [359 161 319 1000 500 1000]

Potenzen von Matrizen bzw. die Inverse zu einer Matrix

Die Inverse einer Matrix kann durch nebenstehende Eingabe bestimmt werden.

~	'Edit Ak	tion Inte	eraktiv	X
	b ™¶	£%∕/▼ 7	₩▼	≥
B^((-1)			
	4044	- 430	- 435	III
	10	210	5179	
	$-\frac{10}{187}$	187	$-\frac{3}{187}$	
	256	130	3565	
	3179	3179	3179	⅃║
b –				

Um das Käuferverhalten nach 5 Jahren zu bestimmen, wird die Übergangsmatrix wie nebenstehend potenziert.

Die Anzahl der Nachkommastelle ist über die Menüleiste (siehe Kreis) über das **Untermenü Grundformat** dann über **Zahlenformat** einzustellen.

_	<u> </u>	
]	🛛 🗙 Edit Aktion Interaktiv 🛛	X
1	▝▙▋▞▞▖▓▓▞▖▎▞ᡶᠠ▎◄	≽
	A×B^(5) [0.2786 0.3671 0.3543] D	

4. Stochastik

(1) Zufallszahlen erzeugen

Es besteht die Möglichkeit Zufallsexperimente mit dem Befehl **randList** zu generieren. Der Befehl ist im Katalog über **Keyboard** und dem Karteikartenreiter **cat** zu finden. Es gilt:

*randList(*Anzahl der Elem., ganzzahl. Anfang, ganzzahl.Ende).

Mit dem Befehl **rand()** erhält man eine zufällige Dezimalzahl zwischen 0 und 1.

(mth abc cat 2D 🗡 🕂	🛛 🎔 Edit Aktion Interaktiv 🛛 🕅
r²Corr Form	▝▙▙▏▞▌▖▋▓▓▓▆▝▌▖▛▖▌▝▌
rand(randList(6,1,49)
RandSeed Eing.	{1,2,25,45,21,31}
	{15,24,13,40,26,21}
	randList(3)
Algeb Standard Real Bog ({0.7664,0.0235,0.6464}

(2) Arbeiten mit Daten

Eine besondere Pflanzenart bewuchert eine Wiesenfläche zu ca. 6% der Gesamtfläche. Mehrere Wissenschaftler mussten zur Sicherheit die Bewucherung bestätigen und führten deshalb stichprobenartige Messungen in Quadraten durch, die bis zu 100 Pflanzen fassen können. Die Reihenfolge der Auswertungen ist für die Ergebnisse entscheidend (Verwelken der Pflanzen etc.), so dass in einer Versuchsreihe (10 Messungen) besonders auf den chronologischen Verlauf zu achten ist.

(Angelehnt an J. Peters: "Stochastik: von null bis eins"; Freiburger Verlag)

(mehr als 10 Pflanzen waren in keinem Quadrat)

Darstellen von Punkten durch Datenplots

Daten können im **Statistik- Menü** in Listen eingetragen werden. Zahlen von 1 bis n können vereinfacht über den Befehl **seq** in der Liste ausgegeben werden. Dazu gibt man den Befehl in der linken Einkreisung direkt über die Tastatur oder über den Katalog (**cat**) ein. Der erste Term gibt die Zahlenfolge an, der zweite Term die Variable; Null ist der Startwert, 10 der Endwert und die Schrittweite ist 1.

Die Anzahl der Pflanzen werden in Liste 1 übertragen. Die anderen fehlenden Werte, im Beispiel ist dies die Anzahl der Pflanzen in einem Quadrat, können direkt in Liste 2 eingegeben werden.

Für die Darstellung der Daten sollte man zunächst die Einstellungen über das Menü **Grafik einstellen** prüfen. Dort können die benötigten Listen angegeben werden. Anschießend sollte z.B. *StatGraph1* aktiviert werden. Den Plot zur Anzahl der Pflanzen in einem Quadrat erhält man durch das Grafik-Ikon.

Statistische Auswertung von Daten - Mittelwert, Median

Für die Auswertung der im **Statistik- Menü** eingegebenen Daten sollte man über das Menü **Calc** durch **Eindim. Variable** die entsprechenden Eingaben tätigen.

(hier ist X-List die Liste der Merkmalsausprägungen, Häuf-k ist die Liste der absoluten Häufigkeiten).

Nachdem die Angaben bestätigt wurden, erhält man das nebenstehende Ergebnisfenster.

Durchschnittlich sind 5,81 Pflanzen in einem Quadrat gefunden worden. Die Standardabweichung ist ca. 2,17, der Median, der Wert, der nach Größensortierung in der Mitte steht, beträgt 6.

Berechnung von Fakultäten und Binomialkoeffizienten

Über **Keyboard** durch den Karteikartenreiter **mth** gelangt man zu kombinatorischen Berechnungsmöglichkeiten.

Die Auswertung einer Versuchsreihe kann bei Verwechselung auf 10!=3628800 Möglichkeiten erfolgen.

Von den 10 Tests sollen nur die ersten 6 der Reihe nach geprüft werden. Bei Verwechselung kann dies auf

 $\frac{10!}{(10-6)!} = 151200 \text{ Möglichkeiten erfolgen.}$

Wahrscheinlichkeiten (3) Bestimmung Binomialverteilung von einer und der Normalverteilung

Zwei Würfel werden geworfen. Das Ereignis E bestehe darin, beim 700-maligen Werfen mit zwei Würfeln mindestens 15- und höchstens 20- mal zwei Sechsen zu erhalten. Das Ereignis H besteht darin, mit einer 50-%igen Wahrscheinlichkeit mindestens zwei Sechsen zu erhalten. (Angelehnt an: Niedersachsen Mathematik, Zentralabitur 2007, CAS Block 2a)

Binomialverteilung:

Über das Menü Interaktiv (oder Aktion) im Main- Menü können über das Untermenü Verteilung binomialverteilte Wahrscheinlichkeiten bestimmt werden. Nach Aktivieren des Befehls müssen in der entsprechenden Eingabemaske die Binomialverteilung Parameter einer eingegeben werden. Nach Bestätigung und Wiederholung für P(X≤14) erhält man nach Subtraktion die Wahrscheinlichkeit zum Ereignis E.

(Beim ClassPad 330 können Unter- und Obergrenze direkt in die Eingabemaske eingegeben werden. Ein anschließendes Subtrahieren entfällt somit).

C.D.= kumulierte Wahrscheinlichk.)

Um das Ereignis H zu erhalten, geht man ähnlich wie in Excel vor. Dazu wählt man das Tabellenkalkulations- Menü und gibt in der ersten Spalte die Werte 10 bis 30 (grobe Abschätzung) ein (Zelle A1=10, Zelle A2=A1+1, anschließend kopieren).

Anschließend platziert man den Cursor in Zelle B1 und gibt den Befehl zur kumulierten Binomialverteilung ein:

binomialCDf(Obergrenze, Stichprobenumfang n, Erfolgsw. p) Der Befehl kann nun in die Zellen der Spalte kopiert werden.

Das Ereignis H entspricht mindestens 19, d.h. man kann von einer Mindestwahrscheinlichkeit von 50% ausgehen, wenn mindestens 19 mal zwei Sechsen gewürfelt werden.

Normalverteilung:

Man geht für die Bestimmung des Ereignisses E analog wie bei der Binomialverteilung vor und wählt den Befehl normCDf im Menü Interaktiv (oder Aktion) im Main- Menü:

Die Standardabweichung als auch der Erwartungswert können als Rechnung (vgl. σ in der 2. Abbildung) eingegeben werden!

(4) Regression

In einer Messreihe, bei denen fünf Erwachsene teilnahmen, wurden die Körpergröße und das Körpergewicht auf Abhängigkeit untersucht. Das Ergebnis ist der folgenden Tabelle zu entnehmen:

Körpergröße in cm	170	175	180	185	190
Körpergewicht in kg	72	80	82	89	102

Für die Darstellung der Messdaten geht man wie in *4. Stochastik (2)* vor. Damit die Abhängigkeit nachgewiesen werden kann, berechnet man über das Menü **Calc** die **Lineare Regression**.

Die Abhängigkeit zwischen den Messwerten (Größe zu Gewicht) ist relativ groß (der Korrelationskoeffizient r ist nahe der 1).

Nach Bestätigung der Regressionsberechnung erscheint automatisch eine Regressionsgerade in dem bestehenden Plot (vgl. *4. Stochastik (2)*).

(5) Konfidenzintervalle

Ein Hersteller von Platinen ist stolz auf eine 2-%ige Ausschussquote seiner Produkte. Um zusätzliche Sicherheit zu erhalten, wurde eine großangelegte Kontrolle von 1.000 Platinen durchgeführt. Dabei stellte man fest, dass 30 Platinen nicht in Ordnung waren.

Beurteilen Sie mit einem Sicherheitsniveau von 94 %, ob das Qualitätsmanagement wirklich zufrieden sein kann.

Um mit der im Rechner hinterlegten angenäherten Formel zu arbeiten, sollten Konfidenzintervalle über das Statistik-Menü über das Menü Calc durch Konf .-Die Intervall bestimmt werden. Eingabemasken sind entsprechend Causzufüllen. Niveau ist das Sicherheitsniveau, X ist die Anzahl der tatsächlich gefunden defekten Platinen und n ist der Stichprobenumfang.

Nach Bestätigung erhält man die rechtsstehende Eingabemaske.

Die Ausschussquote liegt somit mit einer 94-%igen Wahrscheinlichkeit im Intervall [0,0199; 0,0401].

Typ <u>KonfIntervall ▼</u> 1 Anteilsw. Z-Int. ▼	C-Niveau 9.94 x 30 n 1000
□Hilfe Weiter>>	< <zurück weiter="" □hilfe="">></zurück>
	OnePropZInt 📶
Links <u>0.0198541</u> Re. <u>0.0401458</u> ê <u>0.03</u> n 1030	
Links 0.0198541 Re. 0.0401458 P 0.03 n 10000 N 10000	

Beschreiben Sie die Auswirkungen auf wahrscheinlichkeit auf 99 % ansteigt. Tatsächlich ist die "genauere" Berechnung

$$\text{ "uber } P\left(\left|\frac{X}{n} - p\right| \le c\sqrt{\frac{p(1-p)}{n}}\right) \approx \gamma \ (*)$$

möglich. Es gilt die Beziehung

$$\Phi(c) = \frac{1+\gamma}{2}$$
. Das c erhält man wie folgt:

$$\Phi^{-1}(\Phi(c)) = c = \Phi^{-1}\left(\frac{1+0,99}{2}\right)$$
, bzw

über das Main- Menü über das Menü Interaktiv (oder Aktion) durch Inv.Verteilung und invNormCDf.

Anschließend gibt man die linke Seite von (*) mit den Betragszeichen (**Keyboard**, Karteikartenreiter **mth**) im **Grafik &**

 Tabelle- Menü ein, danach die rechte Seite als zweite Funktionsgleichung. Das

Ergebnis erhält man als Schnittpunktproblem (vgl. *1.Grundlagen* (5)).

Die Ausschussquote liegt somit mit einer 99-%igen Wahrscheinlichkeit im Intervall [0,0197; 0,0453]. das Vertrauensintervall, wenn die Sicherheits-

